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Pasto and WojtkowskilO have recently isolated 
several enol borinates and suggest that intermediates 
such as 2 or 3 exist in the isomeric enol borinate forms 
4 or 5. Thus, if this reaction involves an a bora 
ester, the boron must migrate to oxygen (eq 5 and 6 ) .  
Such intermediates are rapidly hydrolyzed by water. 

4 

5 

Since a-haloboranes rearrange upon 

(6 1 

addition of a 
nucleophile,l' methanolysis of 5 or 3 should give alkyl 
homologated esters unless protonolysis competes with 
the rearrangement. I n  an attempt to increase the 
yield of alkyl homologation, nucleophiles such as pyr- 
idine and triethylamine were added. After transfer, 
protonolysis should then give the alkyl ester. How- 
ever, the yields of alkyl ester did not improve, sug- 
gesting that the rearrangement to  the enol borinates 
4 and 5 may be fast and irreversible even at  -62". 
Alternatively, the a transfer must be slow at these 
temperaturcs even when catalyzed by good nucleo- 
philes. Attempts to  identify definitively the inter- 
mediates by nmr were unsuccessful owing to  the com- 
plicated spectrum of the mixture. 

If the reasonable assumption is made that the con- 
version to the enol borinate is faster than rearrange- 
ment, the yields of chloro, alkyl, and aryl esters in- 
dicate their relative migratory aptitude. The data 
in Table I thus suggests the migratory aptitude to  be 
in the order Ar > R > C1. Such an order for aryl 
us. alkyl has previously been observed in the rear- 
rangements of a-haloboronates.12 

In  spite of some limitations, this reaction provides 
a highly useful and operationally simple method for 
converting alkenes/arenes to  their corresponding two- 
carbon chain-lengthened ethyl esters. Simple pro- 
cedures have recently become available for the syn- 
thesis of the required alkyldichloroboranesa and aryl- 
dic hloro boranes .7 

We are continuing to  explore the use of alkyl and 
aryldichloroboranes in organic synthesis. 
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a-Halocarbonyl Compounds. 11. A Position- 
Specific Preparation of a-Bromo Ketones by 

Bromination of Lithium Enolates. A 
Position- Specific Introduction of 

a,@-Unsaturation into Unsymmetrical Ketones 

Summary: Low-temperature bromination of specifi- 
cally generated ketone enolates under aprotic conditions 
produces position-specific a-bromo ketones which can 
be converted to a,@-unsaturated ketones; no Favorskii 
rearrangement or other base-catalyzed side reactions 
and no positional equilibration of bromine are ob- 
served. 

Sir: Because a-halocarbonyl compounds are useful 
synthetic intermediates in a number of widely different 
organic transformations, we have been interested for 
some time in devising some new efficient methods for 
their preparation.2 Common methods for preparing 
a-halo ketones, in general, provide little position selec- 
tivity if both a and a' positions are available for direct 
h a l o g e n a t i ~ n . ' ~ ? ~ ~  The available, generally applicable 
methods3 for specific preparation of either a- or a'-halo- 
genated unsymmetrical ketones usually require exten- 
sive reaction sequences or produce the desired product in 
only moderate yield, often still contaminated with sig- 
nificant amounts of isomeric halo lietone. Even the 
well-known bromination of isomerically specific, neutral 
enol  derivative^^^)^ of unsymmetrical ketones, e.g., 
enol acetates, suffers the disadvantage that acidic by- 
products may catalyze equilibration of starting material 
or of product halo lietone. Consequently, both a- and 
a'-bromo ketones, as well as polybrominated materials, 
may be observed. 

Perhaps the most obvious method for position-specific 
halogenation of unsymmetrical ketones, the quenching 
of position-specific enolate anions4 by halogen, has not 
received appropriate attention because of the attendant 
possibility of subsequent reactions (Favorskii rearrange- 
ments and/or alkylations and condensations) of the 
often quite reactive a-halo ketones under strongly basic 
reaction conditions. However, we wish to report that 
bromination of lithium enolates a t  low temperature is as 
effective a method for preparing specifically a- or a'- 
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bromo ketones, as has already been reported for prepar- 
ing the more readily available a-bromo e ~ t e r s . ~ ~ , ~  

Position-specific lithium enolates generated in tetra- 
hydrofuran from enol enol silyl ethers,4b 
or directly from the ketone (by the kinetic action of lith- 
ium dii~opropylamide~~) were brominated a t  - 78 o by 
rapid addition of 1 equiv of bromine, as a solution in 
methylene chloride. This cold reaction, which instan- 
taneously decolorized the bromine solution, was stirred 
for 1 min and then rapidly quenchedwith excess aqueous 
sodium bicarbonate. Extraction of the resulting slurry 
with pentane allowed isolation of the desired a-bromo 
ketone in good to excellent yield. The crude bromo 
ketones showed negligible amounts of polybromination 
or equilibration of bromine to the a' position. We ob- 
served no evidence of Favorskii rearrangement or of 
alkylation or condensation by-products, even in those 
cases where stronger base than lithium enolate was 
present (enolatc solutions derived from enol acetates 
by the action of methyllithium contained 1 equiv of 
lithium lert-butoxide). Some representative results for 
the direct bromination of lithium enolates are described 
for several unsymmetrical ketones in Schemes I and II.6 

SCHEME Ia 
BROMINATION OF ENOLATES DERIVED FROM 

0 OAc 0 0 
CYCLOHEXANONE AND 2-METHYLCYCLOEEXANONE 

(ref 6a) (ref 6b) 
OAc 0 

(ref .IC) (ref f c )  

OSi Me,, 0 0 

(ref 4b)  / (ref 610) \ r 
6Il-X$ 

a Procedures for generation of lithium enolates and subsequent 
bromination: (A)  enol acetate and 2 equiv of MeLi in THF at  
room temperature, addition Brz in CHzCll a t  -78'?, quench 
with aqueous bicarbonate;4& (B) enol silyl ether and 1 equiv of 
MeLi in THF a t  room temperature, addition Br2 in CH&lz at 
-78", quench with aqueous b i ~ a r b o n a t e ; ~ ~  (C) ketone and 1 
eqiiiv of lithium diisopropylamide in THF at  room temperature, 
addition Brz in CHzClz at  -78", quench with aqueous bicarbon- 
ate, final work-up with cold dilute sulfuric (product may 
contain small amounts of a'-brominated isomer depending on con- 
tact time with acid). Procedures for preparation of enol deriva- 
tives: (D)  mixture of ketone, isopropenyl acetate, and catalytic 
TsOH with distillation of acetone;B& (E) mixture of ketone, AczO, 
and catalytic HClO, in cC14 at room temperature;'c (F) ketone 
and 1 equiv of lithium diisopropylamide in THF at  room tem- 
perature, quench at 0" with excess CISiMe3 and EtaS, bicarbonate 
then dilute acid work-up; (G) unsaturated ketone and 1.1 equiv 
of LiMezCu in ether at O", quench with excess AczO, partition be- 
lween aqueous bicarbonate and pentane with cold dilute am- 
monium hydroxide work-up; (H) unsaturated ketone and 1.1 
eyuiv of LiMezCu in ether a t  Oo, quench with excess ClSiMe3 
and Et,S, partition between aqueous bicarbonate and pentane 
with cold dilute acid work-up. Procedure for dehydrobromina- 
tion: (I) crude a-bromo ketone in DMF added dropwise to ex- 
cess LizC03 and LiBr in DMF at  -130°.1d 

SCHEME IIa 
BROMINATIOK OF ENOLATES DERIVED FROM TRAPPED 

INTERMEDIATES O F  CONJUQATE ADDITION TO CYCLOHEXENONES 
0 0 Ac 

(ref 6d, 3c) 
0 0 

(ref 6e, 3c) 
0 

G 

92% (R-H; R'=Ac) 
r 

H 
91% ( K = C H , ,  R=SiMeJ)  

r + 
R R  

OR' 
A 

93% ( R = H ;  R '=Ac)  

B r 
R 91% l R = C f I , :  R = S i M e )  R 
(ref 6f. 6g) 

(I See Scheme I, footnote a. 

Note that the vields of a-bromo ketone 

0 

R LY R 

(ref 6h,6i 1 

are extremely 
highs in all cases where no reactive amine is present. 
Even when a secondary amide base was used to generate 
the kinetic enolate of 2-methylcyclohexanone and the 
subsequent bromination carried out in the presence of 
secondary amine, the yield of a-bromo ketone is superior 
to  those observed with most other methods of prepara- 
tion. And, finally, the purity of a-bromo ketones pre- 
pared by enolate bromination as directly derived from 
evaporation of the pentane extract is sufficient for use 
in most synthetic transformations requiring these versa- 
tile intermediates. 

The enol derivatives6 used as precursors to a-bromo 
ketones in Scheme I1 were derived in high yield by 
conjugate addition of 1.1 equiv of lithium dimethyl- 
copper in ether a t  0" to the appropriate a,p-unsaturated 

( 5 )  M. W. Rathke and A. Lindert. Tetrahedron Lett . ,  3995 (1971). 
(6) Yields indicated in Schemes I and I1 for enol acetates, enol silyl ethera, 
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poliitional equilibration of bromine as well as destruction of extensive amounts 
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reasonably accurate was demonstrated by the high-yieldconversion of several 
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by comparison with known samples or by careful correlation of observed 
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I n d .  Eng. Chem., 41, 2920 (1949); (b) E. W. Garbisch, Jr., J .  Ore. Chem., 
SO, 2109 (1965); (c) W. W. Rinne, H. R. Deutsch, M. I. Bowman, and 1. B. 
Joffe. J .  Amer.  Chem. Soc., 72, 5759 (1950); (d) I,. Bardou, J. Elquero, and 
5.. Jacquier, Bull. Soe. Chim.  P r . ,  297 (1967); (e) C. Djerassi, L. E. Geller, and 
Y. J. Eisenbraun, J .  Org .  Chem., 25, 1 (1960); (f)  J. Champagne, H. Favre, 
D. Vocelle, and I. Zbikowski, Can. J. Chem., 42, 212 (1964); (9) P. F. 
Hudrlik, Ph.D. Thesis, Columbia, University, New Pork,  N. Y., 1968; (h) 
H. Dusrr, G.  Ourisson, and I3. Waegell, Chem. Ber., 98, 1858 (1966); (i) 
I). Waegell, Bull. SOC. Chim.  Fr., 855 (1964). 
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ketone; the resultant enolate mixtures were trapped' 
by addition of excess acetic anhydride or of chlorotri- 
methylsilane (mixed with triethylamine). 

Finally, it should also be noted that this position- 
specific a bromination of unsymmetrical ketones readily 
allows the introduction of specific a,@ unsaturation via 
direct dehydrobrominationld of the crude a-bromo 
ketone. Accordingly, in 70-75y0 overall yield, 2-meth- 
ylcyclohexanone was converted specifically to either 
methylcyclohexenone shown in Scheme I. Scheme I1 
further demonstrates that similar dehydrobromination 
of a-bromo ketones derived from conjugate addition 
completes, in comparable overall yield, a sequence which 

(7) (a) For reports of enol silyl ethers by quenching magnesium enolates 
(from copper-catalyzed Grignard conjugate additions), see ref 4b and Bg. 
(b) For reports of enol acetates by quenching magnesium enolates using 
acetyl chloride, see J. A.  Marshall and A. R. Hochstetler, J .  Aner .  Chem. 
Soc., 91, 648 (1969). (0) For apreliminary report of enol acetates by quench- 
ing complex lithium-copper enolates (from lithium dialkylcopper conjugate 
additions) with acetyl chloride, see E. Piers, W .  de Waal, and R. W. Britton, 
ibid. ,  98, 5113 (1971). 

is, formally, the nucleophilic substitution of alkyl for 
hydrogen a t  the @ position of @unsaturated ltctones. 
A forthcoming publication will describe in greater de- 
tail this @-nucleophilic substitution sequence. 
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